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Abstract

It has recently been proved that the popular nonlocal means (NLM) denoising
algorithm does not optimally denoise images with sharp edges. Its weakness
lies in the isotropic nature of the neighborhoods it uses to set its smoothing
weights. In response, in this paper we introduce several theoretical and
practical anisotropic nonlocal means (ANLM) algorithms and prove that they
are near minimax optimal for edge-dominated images from the Horizon class.
On real-world test images, an ANLM algorithm that adapts to the underlying
image gradients outperforms NLM by a significant margin.
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1. Introduction

Image denoising is a fundamental primitive in image processing and com-
puter vision. Denoising algorithms have evolved from the classical linear
and median filters to more modern schemes like total variation denoising [1],
wavelet thresholding [2], and bilateral filters [3–6].

A particularly successful denoising scheme is the nonlocal means (NLM)
algorithm [7], which estimates each pixel value as a weighted average of other,
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Figure 1: An example of a Horizon class image that features a smooth edge
contour that separates the white region from the black region.

similar noisy pixels. However, instead of using spatial adjacency or noisy pixel
value as the similarity measure to adjust the estimate weights, NLM uses a
more reliable notion of similarity based on the resemblance of the pixels’
neighborhoods in high-dimensional space. This unique feature benefits NLM
in two ways. First, it provides more accurate weight estimates. Second,
it enables NLM to exploit the contribution of all pixels in the image. In
concert, these features enable NLM to provide state-of-the-art performance
for a large class of image denoising problems.

Nevertheless, in a recent paper, we have proved that NLM does not attain
optimal performance on images with sharp edges from the so-called Horizon
class (see Figure 1) [8]. Indeed, NLM’s theoretical performance is more or
less equivalent to wavelet thresholding, which was shown to be suboptimal
in [9]. The core problem is that NLM (and wavelet thresholding) cannot
exploit the smoothness of the edge contour that separates the white and
black regions. Therefore, there is room for improvement.

In this paper, we introduce and study a new denoising framework and
prove that it is near-optimal for Horizon class images with sharp edges.
Anisotropic nonlocal means (ANLM) outperforms NLM, wavelet threshold-
ing, and more classical techniques by using anisotropic neighborhoods that
are elongated along and matched to the local edge orientation. Figure 2 com-
pares the neighborhoods used in ANLM with those used in NLM. Anisotropic
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Figure 2: Comparison of (left) the isotropic neighborhoods employed by Non
Local Means (NLM) versus (right) anisotropic neighborhoods employed by
Anisotropic NLM (ANLM).

neighborhoods enable ANLM to distinguish between similar and dissimilar
pixels more accurately.

We develop three different ANLM algorithms of increasing levels of practi-
cality. Oracle Anisotropic Nonlocal Means (OANLM) assumes perfect knowl-
edge of the local orientation of the edge contour and is used primarily for our
theoretical optimality analysis. Discrete-angle Anisotropic Nonlocal Means
(DANLM) optimizes the choice of the anisotropic neighborhood around each
pixel in order to achieve near-optimal performance without any oracle in-
formation. Since it is more computationally demanding than NLM, we in-
troduce an algorithmic simplification. Gradient based Anisotropic Nonlo-
cal Means (GANLM) uses image gradient information to estimate the edge
orientation; using simulations, we demonstrate that GANLM significantly
outperforms NLM in practice on both Horizon class and real-world images.

The paper is organized as follows. Section 2 explains the minimax frame-
work we use to analyze the denoising algorithms and reviews the necessary
background. Section 3 introduces the OANLM and DANLM algorithms and
presents the main theorems. Section 4 addresses some of the practical ANLM
issues by introducing GANLM and summarizes the results of a range of simu-
lations using synthetic and real-world imagery. Section 5 contains the proofs
of the main theorems. Section 6 reviews the related work in the literature.
Section 7 closes with a discussion of our current and potential future results.
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2. Minimax analysis framework

In this section we introduce the minimax framework [2, 10] and the Hori-
zon class image model considered in this paper. Note that, in order to stream-
line the proofs, we take a continuous-variable analysis approach in this paper,
in contrast to our approach in [8]. The moral of the story is compatible with
[8], however.

2.1. Risk

We are interested in estimating an image described by the function f :
[0, 1]2 → [0, 1] (f ∈ L2([0, 1]2)) from its noisy observation

dY (t1, t2) = f(t1, t2)dt1dt2 + σdW (t1, t2). (1)

Without loss of generality, we consider only square images. Here W (t1, t2)
is the Wiener sheet,2 and σ is a constant that scales the noise. For a given
function f and a given estimator f̂ , define the risk as

R(f, f̂) = E(‖f − f̂‖2
2),

where the expected value is over W . The risk can be decomposed into bias
squared and variance terms

R(f, f̂) = ‖f − Ef̂‖2
2 + E‖f̂ − Ef̂‖2

2.

Let f belong to a class of functions F . The risk of the estimator f̂ on F
is defined as the risk of the least-favorable function, i.e.,

R(F , f̂) = sup
f∈F

R(f, f̂).

The minimax risk over the class of functions F is then defined as

R∗(F) = inf
f̂

sup
f∈F

R(f, f̂).

R∗(F) is a lower bound for the performance of any estimator on F .

In this paper, we are interested in the asymptotic setting as σ → 0. For
all the estimators we consider, R(F , f̂) → 0 as σ → 0. Therefore, following
[11, 12] we will consider the decay rate of the minimax risk as our measure
of performance.

2The Wiener sheet is the primitive of white noise.
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2.2. Horizon edge model

In our analysis, we consider the Horizon model that contains piecewise
constant images with sharp step edges lying along a smooth contour [9, 11, 13]
(our analysis extends easily to piecewise smooth edges). Let Hölderα(C)
be the class of Hölder functions on R, defined in the following way: h ∈
Hölderα(C) if and only if

|h(k)(t1)− h(k)(t′1)| ≤ C|t1 − t′1|α−k,

where k = bαc. Consider a transformation that maps each one-dimensional
edge contour function h to a two-dimensional image fh : [0, 1]2 → R via

fh(t1, t2) = 1{t2<h(t1)}.

The Horizon class of images is then defined as

Hα(C) = {fh(t1, t2) : h ∈ Hölderα(C) ∩Hölder1(1)}, (2)

where α is the smoothness of the edge contour. Figure 1 illustrates a sample
function of this class. The following theorem characterizes the minimax rate
of Hα(C) [9, 11, 13].3

Theorem 1. [9, 11, 13] For α ≥ 1, the minimax risk of the class Hα(C) is

R∗(Hα(C)) = Θ
(
σ

2α
α+1

)
.

Achieving the minimax rate is a laudable goal that any well-respecting
denoising algorithm should aspire to. In this paper, we will focus primarily
on α = 2 edge contours, for which the optimal minimax decay rate is σ−4/3.
However, it is straightforward to draw similar conclusions for the other values
of α.

3The models considered in [9, 11, 13] are slightly different from the continuous frame-
work of this paper. Therefore, for the sake of completeness we prove Theorem 1 in Ap-
pendix C.

5



Table 1: Minimax risk decay rates of several classical image denoising algo-
rithms; recall that the optimal minimax rate is σ4/3.

Algorithm Minimax Rate

Mean filter [14] σ2/3

Wavelet thresholding [9, 11] σ1

Nonlocal means [8] σ1

2.3. Image denoising algorithms

Minimax risk analysis of the classical denoising algorithms has revealed
their suboptimal performance on images with sharp edges. Table 1 summa-
rizes several of these algorithms and their minimax decay rates (up to a log
factor).4 The suboptimality of wavelet thresholding has led to the develop-
ment of ridgelets [15], curvelets [16], wedgelets [9], platelets [17], shearlets
[18], contourlets [19], bandelets [20], directionlets [21] and other types of
directional transforms. See [22] and the references therein for more informa-
tion. In the framework of this paper, wedgelet denoising [9] provably achieves
the optimal minimax rate. However, it performs poorly on textures, which
has limited its application in image processing.

2.4. Nonlocal means denoising

In 2005, Buades, Coll, and Morel significantly improved the performance
of the bilateral filter [8] by incorporating a new notion of pixel similarity.
As in the bilateral filter, NLM estimates each pixel value using a weighted
average of other pixel values in the image. However, NLM sets the weights
according to the similarity between the pixel neighborhoods rather than the
pixel values. Furthermore, in contrast to the bilateral filter, in which only
the vicinity of each pixel contributes to the estimate, in NLM all pixels may
contribute.

4The analysis framework used in [14] and [8] is discrete rather than continuous. There-
fore, for the sake of completeness we establish the results for the mean filter and NLM in
Appendix A and Appendix B, respectively.
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Specifically, the NLM algorithm is defined as follows. Let S = [0, 1]2

represent the domain of the image. Define the δ-neighborhood of a (t1, t2) as

Iδ(t1, t2) =

[
t1 −

δ

2
, t1 +

δ

2

]
×
[
t2 −

δ

2
, t2 +

δ

2

]
. (3)

Following the definition of NLM in the discrete setting, we pixelate this
neighborhood by partitioning Iδ(t1, t2) into n2 subregions Ij1,j2δ = [t1− j1δ

2n
, t1+

j1δ
2n

]× [t2 − j2δ
2n
, t2 + j2δ

2n
]. The pixelated neighborhood of (t1, t2) is defined as

yδt1,t2 ∈ R
n×n and satisfies

yδt1,t2(j1, j2) =

∫
(s1,s2)∈Ij1,j2δ

dY (s1, s2).

We further define the pixelated process as

X(t1, t2) =
n2

δ2

∫
(s1,s2)∈Iδ/n(t1,t2)

dY (s1, s2).

Define the δ-neighborhood distance between two points in the image as

d2
δ(dY (t1, t2), dY (s1, s2))

=
1

n2 − 1

(
‖yδt1,t2 − yδs1,s2‖

2
2 − |yδt1,t2(0, 0)− yδs1,s2(0, 0)|2

)
, (4)

where ‖yδt1,t2‖
2
2 ,

∑
i,j yδt1,t2(i, j). Note that in contrast to the definition in

[7], we have removed the center element |yδt1,t2(0, 0) − yδs1,s2(0, 0)|2 from the
summation. Since we assume that n2 → ∞ as σ → 0, the effect is negli-
gible on the asymptotic performance. But, as we will see below, removing
the center element simplifies the calculations considerably. NLM uses the
neighborhood distances to estimate

f̂N(t1, t2) =

∫
(s1,s2)∈S w

N
t1,t2

(s1, s2)X(s1, s2)ds1ds2∫
(s1,s2)∈S w

N
t1,t2(s1, s2)ds2ds2

,

where wNt1,t2(s1, s2) is set according to the δ-neighborhood distance between
dY (t1, t2) and dY (s1, s2).5 It is straightforward to verify that Ed2

δ(dY (t1, t2),

5We assume that both wNt1,t2(s1, s2)X(s1, s2) and wNt1,t2(s1, s2) are Lebesgue integrable
with high probability.
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dY (s1, s2)) = d2
δ(f(t1, t2), f(s1, s2)) + 2n2σ2

δ2 , which suggests the following
strategy for setting the weights:

wNt1,t2(s1, s2) =

{
1 if d2

δ(dY (t1, t2), dY (s1, s2)) ≤ 2n2σ2

δ2 + τσ,
0 otherwise,

(5)

where τσ is the threshold parameter. Soft/tapered weights have been explored
and are often used in practice [7]. However, the above untapered weights
capture the essence of the algorithm while simplifying the analysis.

The distinguishing feature of NLM — the weighted averaging of pixels
based on the neighborhoods — produces a decay rate that is superior to that
linear filters as shown in [8]. However, compared to the optimal rate of σ4/3,
NLM remains suboptimal. We introduce the anisotropic NLM algorithm in
the next section to address this gap in performance.

3. Anisotropic nonlocal means denoising

In this section, we introduce the Anisotropic Nonlocal Means (ANLM) al-
gorithm concept that exploits the smoothness of edge contours via anisotropic
neighborhoods. We then present OANLM and DANLM algorithms and ex-
plain their performance guarantees.

3.1. Directional neighborhoods

We now formally introduce the notion of directional neighborhoods. Then
we extend NLM to exploit such neighborhoods. This will lay the foundation
for the OANLM and DANLM algorithms.

Let Rθ
ν,µ(·) represent the rotation operator on a neighborhood; when ap-

plied to a generic point (u, v) ∈ S in the neighborhood around (ν, µ), Rθ
ν,µ

rotates (u, v) by θ◦ counter-clockwise around the point (ν, µ). For a setQ ⊂ S
we define Qθ , Rθ

ν,µ(Q) as

(s, t) ∈ Qθ ⇔ ∃(u, v) ∈ Q such that (s, t) = Rθ
ν,µ((u, v)).

The (θ, δs, δ`)-anisotropic neighborhood of the point (t1, t2) is defined as

Iθ,δs,δ`(t1, t2) , Rθ
t1,t2

([
t1 −

δ`
2
, t1 +

δ`
2

]
×
[
t2 −

δs
2
, t2 +

δs
2

])
∩ S.
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Figure 3: The anisotropic neighborhood Iθ,δs,δ`(t1, t2) in the discrete setting
for two different pixels of a Horizon class image.

where θ, δ`, and δs (δs ≤ δ`) represent the orientation angle, length, and width
of the neighborhood, respectively. Figure 3 displays such neighborhoods for
two different pixels. Each element of the NLM partitioning of Iθ,δs,δ`(t1, t2)
into ns×n` pixelated regions has a corresponding element in the partitioning
of neighborhoods, given by Ij1,j2θ,δs,δ`

(t1, t2) = Rθ
t1,t2

([t1 − j1δ`
2n`
, t1 + j1δ`

2n`
] × [t1 −

j1δs
2ns

, t1 + j1δs
2ns

]).

The pixelated neighborhood of (t1, t2) is defined as the y ∈ Rns×n` satis-
fying

yθ,δ`,δst1,t2 (j1, j2) =
nsn`
δsδ`

∫ ∫
(s1,s2)∈Ij1,j2θ,δs,δ`

(t1,t2)

dY (s1, s2).

Define the neighborhood process as

X(t1, t2) =
nsn`
δsδ`

∫ ∫
(s1,s2)∈I

θ, δsns
,
δ`
n`

(t1,t2)

dY (s1, s2).

The anisotropic (δ`, δs, θ)-neighborhood distance between two given points in
the image is then defined as

d2
θ,δs,δ`

(dY (t1, t2), dY (s1, s2))

=
1

nsn` − 1

(
‖yθ,δ`,δst1,t2 − yθ,δ`,δss1,s2

‖2
2 − |y

θ,δ`,δs
t1,t2 (0, 0)− yθ,δ`,δss1,s2

(0, 0)|2
)
. (6)
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The ANLM estimate at point (t1, t2) is given by

f̂ θ,δs,δ`(t1, t2) =

∫
(s1,s2)∈S w

θ,δs,δ`
t1,t2 (s1, s2)X(s1, s2)ds1ds2∫ ∫
wθ,δs,δ`t1,t2 (s1, s2)ds1ds2

.

where the weights are obtained from

wθ,δs,δ`t1,t2 (s1, s2) =

{
1 if d2

θ,δs,δ`
(dY (t1, t2), dY (s1, s2)) ≤ 2nsn`σ

2

δsδ`
+ τσ,

0 otherwise.
(7)

Here τσ is the threshold parameter and 2nsn`σ
2

δsδ`
+ τσ is the threshold value.

ANLM extends NLM in two significant ways. First, in ANLM θ, δs, δ`
are free parameters, while in NLM θ = 0 and δs = δ`. As Figures 4 and
5 demonstrate, these free parameters significantly affect the performance of
ANLM. Figure 4 illustrates the visual denoising results as we vary the angle
of the anisotropic neighborhood. Figure 5 does the same for the empirical
peak signal-to-noise ratio (PSNR).6

3.2. Oracle ANLM

It is clear from Figures 4 and 5 that we should align the ANLM neigh-
borhood locally with the edge to maximize denoising performance. In the
Oracle ANLM (OANLM) algorithm, we assume that we have access to an
oracle that knows the image’s edge orientation at each pixel. Consider
fh(t1, t2) ∈ Hα(C). Let h′(t1) denote the derivative of the edge contour
h(t1), and let Γγ , {(t1, t2) : t1 = γ} segment the region S. Define θγ as the
angle between the tangent to the edge contour h and the horizontal line at
t1 = γ. OANLM is defined as ANLM with the following parameter settings:

• Quadratic scaling: Instead of using isotropic (square) neighborhoods,
we use anisotropic (rectangular) neighborhoods of size δs × δ`. The
scaling of δs and δ` depends on the smoothness of the edge. Since

6In practice images are measured on a discrete lattice, i.e., the pixelated values are
known. Let the pixelated values of the original noise-free image and the estimator be
fij and f̂i,j , respectively. The empirical mean-squared-error (MSE) of an estimator f̂ is

defined as MSE = 1
n2

∑
i,j(f̂i,j − fi,j)2. If fi,j ∈ [0, A], then the empirical peak signal-to-

noise ratio (PSNR) is defined as 10 log10
A2

MSE .
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(a) 0◦, PSNR = 20.6dB (b) 45◦, PSNR = 19.2dB

(a) 90◦, PSNR = 20.6dB (d) 135◦, PSNR = 28.9dB

Figure 4: Effect of the anisotropic neighborhood orientation angle θ on the
denoising performance of ANLM. The images are 256 × 256 pixels with a
true edge orientation of 135◦, and the noise standard deviation in practical
algorithms is ξ = 0.5 (see Section 4.1). The neighborhood size and threshold
parameter are δs = 1/256, δ` = 20/256 and τ = 2.7ξ2, respectively. The
angles of the neighborhoods (θ) and the resulting PSNR of the estimates
are noted below the images. There is a substantial subjective and objective
improvement in the performance of ANLM when the neighborhood is aligned
with the edge.
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Figure 5: Effect of the anisotropic neighborhood orientation angle θ on the
denoising performance of ANLM. The experimental parameters are the same
as in Figure 4. For each value of θ we plot the result of 10 Monte Carlo
simulations.

we are primarily interested in H2(C), we will emphasize the quadratic
scaling7 δs = 4σ4/3| log σ|4/3 and δ` = 2σ2/3| log σ|2/3; that is δs = δ2

` .

• Aligned neighborhoods: We align the neighborhood at point (t1, t2) to
the orientation θt1 of the edge contour at (t1, h(t1)). Thus all pixels
in a column have the same orientation. Figure 6 illustrates such a
neighborhood selection.8

• Logarithmic pixelation: We assume that ns × n` = log2 σ. In other
words, as σ increases the resolution of the pixelated image increases as
well.

Theorem 2. If f̂O is the OANLM estimator with the threshold τσ = 2√
| log σ|

,

7If the smoothness of an edge is α > 1, then the optimal neighborhood size is given by
δs = Θ(σ−2α/(α+1)| log σ|2α/(α+1)) and δ` = Θ(σ−2/(α+1)| log σ|2/(α+1)).

8In smooth regions, where the pixel neighborhoods do not intersect with the edge,
neither the shape nor the orientation of the neighborhood affect the denoising performance.
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t1

t2

Figure 6: The OANLM neighborhoods satisfy the quadratic scaling δs =
δ2
` and are aligned with the edge. In regions far from the edge, isotropic

neighborhoods perform just as well.

then

R(Hα(C), f̂O) = O(σ4/3| log σ|4/3).

The proof of Theorem 2 can be simply modified to provide a bound for the
risk of NLM as well. Let δ =

√
δsδ`, where δs and δ` are as given in OANLM

algorithm.

Corollary 1. If f̂N is the NLM estimator with the threshold τσ = 2/
√
| log(σ)|,

then

R(Hα(C), f̂N) = O(σ| log σ|).

In fact, under certain mild assumptions, the risk of NLM can be lower
bounded by Ω(σ). The proof is similar to the proof of Theorem 5 in [8].
However, for the sake of completeness and since our framework differs from
[8], we overview the main steps of the proof in Appendix B.

Theorem 2 is based on the strong oracle assumption that the edge direc-
tion is known exactly. Needless to say, such information is rarely available in

13



practical applications. Consider a weaker notion of OANLM that has access
to an estimate θ̂γ of θγ that satisfies

|θ̂γ − θγ| ≤ Θ(σβ). (8)

OANLM with exact edge orientation information corresponds to β = ∞
in this model. When β < ∞, the choices δs = σ2/3| log σ|2/3 and δ` =
σ4/3| log σ|4/3 are not necessarily optimal. The following theorem character-
izes the performance of OANLM using θ̂.

Theorem 3. Let the OANLM estimator use the inaccurate edge ori-
entation θ̂γ satisfying (8). Set the neighborhood sizes to δ` =

min(σ2/3| log2/3 σ|, σ−1+β/2| log σ|) and δs = σ2 log2 σ/δ`. Then the risk of
the estimator with τσ = 2/

√
| log(σ)| satisfies

R(Hα(C), f̂O) = O(δsPoly(| log σ|)),

where Poly(| log σ|) is a polynomial of degree at most 2 in terms of | log σ|.

If the edge estimate is exact, then the result simplifies to the result of
Theorem 2. However, this theorem confirms that OANLM algorithm achieves
the optimal rate even if there is an error in θ̂ of order O(σβ) with β > 2/3.

Corollary 2. Let the OANLM estimator use the inaccurate edge orientation
θ̂γ satisfying (8). Set the neighborhood sizes to δ` = σ1−β/2| log σ| and δs =
σ1+β/2| log σ|. Then, the risk of the estimator satisfies

R(Hα(C), f̂O) = O(σ1+β/2Poly(| log σ|)).

This corollary suggests that, as long as we have an edge orientation es-
timate that improves as the number of pixels increases, OANLM outper-
forms NLM. Also note that, as β decreases, the neighborhoods become more
isotropic.

3.3. Discrete angle ANLM

In this section, we introduce the Discrete-angle ANLM (DANLM) algo-
rithm that achieves the minimax rate without oracle information. The key

14
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Figure 7: DANLM neighborhoods around one pixel location for q = 4.

idea is to calculate the neighborhood distance over several directional neigh-
borhoods and fuse them to obtain a similarity measure that works well for all
directions. As for OANLM, set δs = σ4/3| log(σ)|4/3 and δ` = σ2/3| log(σ)|2/3,
and let q = πσ−2/3. Define the angles θ0 = 0, θ1 = σ2/3, θ2 = 2σ2/3, . . . , θq =
π − σ2/3. For a point (t1, t2) we consider all of the anisotropic, directional
neighborhoods for θ ∈ Θ. Figure 7 displays four of these neighborhoods.

Define the discrete angle anisotropic distance between dY (t1, t2) and
dY (s1, s2)

d2
A(dY (t1, t2), dY (s1, s2)) , min

θ∈Θ
d2
θ,δs,δ`

(dY (t1, t2), dY (s1, s2)),

where d2
θ,δs,δ`

(dY (t1, t2), dY (s1, s2)) is defined in (6). The DANLM estimate
is then given by

f̂D(t1, t2) =

∫
(s1,s2)∈S w

AN
t1,t2

(s1, s2)X(s1, s2)ds1ds2∫
(s1,s2)∈S w

AN
t1,t2(s1, s2)ds1ds2

.

where

wANt1,t2(s1, s2) =

{
1 if d2

A(dY (t1, t2), dY (s1, s2)) ≤ nsn`σ
2

δsδ`
+ τσ,

0 otherwise.
(9)

In summary, we note the following features of the DANLM algorithm.
First, it uses the quadratic scaling δs = δ2

` . Second, the optimal neighborhood
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direction can change from pixel to pixel. The following theorem, proved in
Section 5, shows that the risk of this algorithm is within the logarithmic
factor of the minimax risk.

Theorem 4. The risk of DANLM satisfies

R(Hα(Cα), f̂D) ≤ O(σ4/3| log(σ)|4/3).

Figure 8 reprises the simulation experiment of Figure 4 using the four
algorithms described thus far: NLM, OANLM with perfect knowledge of the
edge orientation, OANLM with imperfect knowledge of the edge orientation,
and DANLM with four angles. All three of the latter algorithms outperform
the isotropic NLM.

4. Practical ANLM algorithms and experiments

In this section we introduce a practical gradient-based ANLM algorithm
and then complement the above theoretical arguments with additional sim-
ulations and experiments with synthetic and real-world imagery.

4.1. Extension to discrete images

In practice the observations are noisy pixelated values of an image and
the objective is only to estimate the pixelated values. In this section we
explain how the ideas of directional neighborhood and ANLM can be ex-
tended to the discrete settings. Suppose we are interested in estimating a

n×n image f( i
n
, j
n
) with noisy observations oi,j = f( i

n
, j
n
) + ζi,j, where ζi,j

iid∼
N(0, ξ2) and ξ is the standard deviation of the noise. The extension of the
anisotropic neighborhood to the discrete setting is straightforward. Let S̄ ={

1
n
, 2
n
, . . . , n−1

n
, 1
}
×
{

1
n
, 2
n
, . . . , n−1

n
, 1
}

and S̃ = {1, 2, . . . , n} × {1, 2, . . . , n}.
For a given set B ⊂ S we define B̄ = B ∩ S̄.

The discrete (θ, δs, δ`)-distance between two pixels oi,j and om,` is defined as

d̄2
θ,δs,δ`

(oi,j, om,`) ,
1

|P|
∑

(r,q)∈P

(oi+r,j+q − om+r,`+q)
2, (10)
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(a) NLM, PSNR = 26 dB (b) OANLM with no error,
PSNR = 28.9 dB

(c) ONALM with error,
PSNR = 28.6 dB

(d) DANLM, PSNR = 27.5 dB

Figure 8: Continuation of the experiment of Figure 4 that compares
(a) isotropic NLM, (b) OANLM with perfect knowledge of the edge direc-
tion, (c) OANLM with 10% error in the knowledge of the edge direction,
(d) DANLM with q = 4 angles. The images are of size 256 × 256 pixels. In
the ANLM algorithms, δs and δ` are the same as in Figure 4. The neighbor-
hood size of NLM is

√
δs × δ`. The edge orientation is 135◦. The standard

deviation of the noise is ξ = 0.5.

where P = {(r, q) ∈ Z2 | ( i+r
n
, j+q

n
) ∈ Īθ,δs,δ`(i/n, j/n)}. See Figure 9. The

ANLM estimate at pixel f( i
n
, j
n
) is given by

17



Figure 9: The anisotropic neighborhood Īθ,δs,δ`(
i
n
, j
n
) in the discrete setting

for two different pixels of a very simple Horizon class image.

f̂ θ,δs,δ`i,j =

∑
m

∑
` w̄

θ,δ`,δs
i,j (m, `)om,`∑

m

∑
` w̄

θ,δ`,δs
i,j (m, `)

,

where the weights are obtained from the distances d̄2
θ,δs,δ`

(oi,j, om,`). For in-
stance, the simple policy introduced in (7) corresponds to

w̄θ,δ`,δsi,j (m, `) =

{
1 if d̄2

θ,δs,δ`
(oi,j, om,`) ≤ 2ξ2 + τn,

0 otherwise.
(11)

Using the discrete anisotropic neighborhood and distance, the extensions of
OANLM and DANLM to the discrete setting is straightforward.

4.2. Gradient-based ANLM

While DANLM is somewhat practical and also theoretically optimal for
the Horizon class of images, its computational complexity is higher than
NLM and grows linearly in the number of directions q, where q ∼ o(n2/3). As
a more practical alternative, we propose Gradient based ANLM (GANLM),
which adjusts the orientation of an anisotropic ANLM neighborhood using an
estimate of the edge orientation provided by the image gradients. Pseudocode
is given in Algorithm 4.2. Note that GANLM reverts back to NLM in regions
with low image gradients, since they will not be “edgy” enough to benefit
from the special treatment.
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Algorithm 1 Gradient-based ANLM (GANLM)

Inputs:
f̂i,j : Estimate of the image pixel
δs × δ`: Size of the neighborhood
λ: Threshold that determines isotropic/anisotropic neighborhood selection

Estimate image gradient (gh(i, j), gv(i, j)) at each pixel (i, j)
for every pixel (i, j) ∈ I do
g(i, j) =

√
g2
h(i, j) + g2

v(i, j)

θi,j = tan−1

(
gv(i, j)

gh(i, j)

)
if gi ≥ λ then

Perform ANLM at pixel yi,j with dδ`,δs,θi,j
else

Perform NLM at pixel yi,j with
√
δsδ`.

end if
end for

There is a rich literature on robust image gradient estimation [23–25].
Most simply, if gh(i, j) and gv(i, j) are the estimated image derivatives
at pixel (i, j), then we can estimate the local orientation of an edge by

θ̂(i, j) = tan−1
(
gv(i,j)
gh(i,j)

)
. To allay any concerns that gradient-based adaptivity

is not robust to noise and errors, we recall Theorem 3, which establishes the
robustness of OANLM to edge angle estimation error. For extremely noisy
images, numerous heuristics are possible, including estimating the image gra-
dients for GANLM from an isotropic NLM pilot estimate. Figure 10 builds
on Figure 8 with a slightly more realistic, curved edge and demonstrates that
the pilot estimate approach to GANLM performs almost as well as an oracle
GANLM that has access to the edge gradient.

Table 2 summarizes the performance of the algorithms introduced in this
paper with that of NLM on the natural test images Barbara [26], Boats [27],
and Wet Paint [28] submerged in noise of two different levels. The table
demonstrates two facts. First, the performance of the practical GANLM
algorithm is very close to the oracle GANLM algorithm. Second these two
algorithms outperform DANLM in all but one case and significantly out-
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(a) Horizon image (b) Noisy image,
PSNR = 16.5dB

(c) NLM, PSNR = 34.4dB

(d) DANLM,
PSNR = 36.2dB

(e) Oracle GANLM,
PSNR = 38dB

(f) GANLM, PSNR = 38dB

Figure 10: Simulation experiment in the same vein as Figures 4 and 8 but
with a slightly more realistic C2 curved edge. The images are of size 512 ×
512 pixels. In the ANLM algorithms δs and δ` follow the quadratic scaling
of Theorem 2. The neighborhood size of NLM is

√
δs × δ`. The standard

deviation of the noise is ξ = 0.15.
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Table 2: Performance of NLM and ANLM algorithms on three test images
at two noise levels.

Test image Algorithm ξ = 0.25 ξ = 0.15

Barbara

NLM 22.48 25.86
DANLM 23.15 26.27

(512 x 512) Oracle GANLM 23.51 26.63
GANLM 23.50 26.60

Boats

NLM 22.75 25.83
DANLM 23.45 26.45

(512 x 512) Oracle GANLM 23.88 26.45
GANLM 23.75 26.35

Wet Paint

NLM 27.66 30.49
DANLM 28.41 30.75

(1024 x 1024) Oracle GANLM 29.02 31.18
GANLM 28.86 31.07

perform standard NLM in all cases. We use 4 discrete angles9 in DANLM
and attribute the superior performance of GANLM over DANLM to more
accurate selection of orientations.

5. Proofs of the main results

5.1. Preamble

We first introduce some notation. Define the following partitions of the
set S:

S1 , {(v, u) | u > h(v) + (1 + C/2)δs},
S2 , {(v, u) | h(v)− (1 + C/2)δs < u < h(v) + (1 + C/2)δs},
S3 , {(v, u) | u < h(v)− (1 + C/2)δs}.

It is important to note that, if (t1, t2) ∈ S1 and tan(θ) = h′(t1), then
Iθ,δs,δ`(t1, t2) does not overlap with the edge contour. In other words, the
correctly aligned neighborhood of (t1, t2) ∈ S1 is always above the edge. The
points in S3 satisfy a similar property. This is clarified in Figure 11.

9Experiments with larger q did not differ appreciably in PSNR at this image size.
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t1

t2

S1	  
	  

S2	  
	  

S3	  
	   (u,v)	  

(u’,v’)	  

Figure 11: Regions S1, S2 and S3. The neighborhood of (u, v) ∈ S3 is aligned
with the edge contour, and therefore it does not intersect the edge, while the
neighborhood of (u′, v′) is not aligned and therefore may intersect with the
edge. The neighborhoods of the pixels in S2 may intersect the edge even
though they are correctly aligned.

We further partition S1 into P1 and P2 and S3 into P3 and P4 such that

P1 , {(v, u) | h(v) + 2δ` + C/2δs ≤ u},
P2 , {(v, u) | h(v) + (1 + C/2)δs ≤ u ≤ h(v) + 2δ` + C/2δs},
P3 , {(v, u) | h(v)− (1 + C/2)δs ≥ u ≥ h(v)− 2δ` − C/2δs},
P4 , {(v, u) | u ≤ h(v)− 2δ` − C/2δs}.

Lemma 1. Any neighborhood of pixel (v, u) ∈ P1 will lie completely above
the edge contour.

Proof. Let (t1, t2) ∈ P1. If (u, v) ∈ Iθ,δs,δ`(t1, t2), then

t2 − v < δ`. (12)

On the other hand, for t′1 ∈ [t1 − δ`, t1 + δ`] we have,

h(t′1) = h(t1) + h′(t1)(t′1 − t1) +
1

2
h′′(t′′1)(t′1 − t1)2,
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S1

S2

S3
!s

!s

t1

t2

P1

P2
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!!
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Figure 12: The regions P1, P2, P3, P4 with αs = (1 + C/2)δs and α` =
2δ` − δs. Every neighborhood of (t1, t2) ∈ P1 will lie completely above the
edge contour. However, some of the neighborhoods of the pixels (t1, t2) ∈ P2

may intersect the edge. A similar property holds for the regions P3 and P4.

where t′′1 is between t1 and t′1. Therefore,

h(t′1)− h(t1) < δ` +
1

2
Cδs, (13)

Comparing (12) and (13) completes the proof.

In spite of P1, some of the neighborhoods of the pixels (v, u) ∈ P2 may
intersect the edge. A similar property holds for P3 and P4, respectively.
Figure 12 displays these regions. The following lemma, proved in [8], will be
used in the proofs of the main theorems. For the sake of completeness, we
sketch the proof here.

Lemma 2. Let Z1, Z2, . . . , Zr be iid N(0, 1) random variables. The χ2
r ran-

dom variable
∑r

i=1 Z
2
i concentrates around its mean with high probability,

i.e.,

P

(
1

r

∑
i

Z2
i − 1 > t

)
≤ e−

r
2

(t−ln(1+t)), (14)

P

(
1

r

∑
i

Z2
i − 1 < −t

)
≤ e−

r
2

(t+ln(1−t)). (15)
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Proof. Here we prove (14); the proof of (15) follows along very similar lines.
From Markov’s Inequality, we have

P

((
1

r

r∑
i=1

Z2
i

)
− 1 > t

)
≤ e−ηt−ηE

(
e
η
r

∑r
i=1 Z

2
i

)
= e−ηt−η

(
E

(
e
ηZ2

1
r

))r
=

e−ηt−η(
1− 2η

r

) r
2

. (16)

The last inequality follows from Lemma 3 in [8]. The upper bound proved
above holds for any η < r

2
. To obtain the lowest upper bound we mini-

mize e−ηt−η

(1− 2η
r )

r
2

over η. The optimal value is η? = arg minη
e−ηt−η

(1− 2η
r )

r
2

= rt
2(t+1)

.

Plugging η? into (16) proves the lemma.

5.2. Proof of Theorem 2

In the set up above, we consider three different regions for the point
(t1, t2). As we will see in the proof, the risk of all pixels in each region has
the same upper bound. We calculate these upper bounds and then combine
them to obtain a master upper bound for the risk of OANLM.

Case I: (t1, t2) ∈ S1. We know that if the anisotropic neighborhood of (t1, t2),
Iθ,δs,δ` is aligned with the edge contour, i.e., tan(θ) = h′(t1), then it does
not intersect the edge contour. To calculate the OANLM estimate we first
calculate the weights. Define

zθ,δs,δ`t1,t2 (j1, j2) =
nsn`
δsδ`

∫
(s1,s2)∈Ij1,j2θ,δs,δ`

dW (s1, s2), (17)

and

Z(t1, t2) =
nsn`
δsδ`

∫ ∫
(s1,s2)∈I

θ, δsns
,
δ`
n`

(t1,t2)

dW (s1, s2),

F (t1, t2) =
nsn`
δsδ`

∫ ∫
(s1,s2)∈I

θ, δsns
,
δ`
n`

(t1,t2)

f(s1, s2)ds1ds2.
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For notational simplicity we will use w(s1, s2) and zt1,t2(j1, j2) instead of

wθ,δs,δ`t1,t2 (s1, s2) and zθ,δs,δ`t1,t2 (j1, j2), respectively. Define

A1 , {(u, v) ∈ P1 | w(u, v) = 1},
A2 , {(u, v) ∈ P4 | w(u, v) = 0}.

Here, let λ(·) denote the Lebesgue measure of a set over R2.

Lemma 3. Let δ` = 2σ2/3| log(σ)|2/3 and δs = 4σ4/3| log(σ)|4/3, ns =
2| log(σ)|2/3 n` = | log(σ)|4/3, and τσ = 2√

| log σ|
. Then,

P(λ(P1)− λ(A1) > ε) = O

(
σ8

ε

)
,

P(λ(P4)− λ(A2) > ε) = O

(
σ8

ε

)
.

Proof. Here we prove the first inequality. The proof of the second inequal-
ity follows a similar route. Since zt1,t2(j1, j2) is the integral of the Wiener

sheet, we have zt1,t2(j1, j2) ∼ N(0, nsn`σ
2

δsδ`
). Combining this with Lemma 2 we

conclude that

P

(
d2
θ,δs,δ`

− 2
nsn`σ

2

δsδ`
≤ t

)
≤ e−

nsn`t
2

4 = O(σ8).

Therefore,

E(λ(A)) = E

∫
(u,v)∈P1

I((u, v) ∈ A) =

∫
(u,v)∈P1

P((u, v) ∈ A)

= λ(P1)−O(σ8). (18)

An upper bound for P(λ(P1)−λ(A) > ε) using the Markov inequality yields
the result

P(λ(P1)− λ(A) > ε) ≤ E(λ(P1)− λ(A))

ε
= O

(
σ8

ε

)
.
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Define the event E as

E = {λ(P1)− λ(A1) < σ2} ∩ {λ(P4)− λ(A2) < σ2}.

For notational simplicity we also define the following notations:

wXdudv , w(u, v)X(u, v)dudv,

Xdudv , X(u, v)dudv,

wdudv , w(u, v)dudv,

Zdudv , Z(u, v)dudv,

wZdudv , w(u, v)Z(u, v)dudv.

The risk of the OANLM estimator at (t1, t2) ∈ S1 is then given by

E

(∫
S
wXdudv∫
S
wdudv

)2

.

Define U =
(∫

S wXdudv∫
S wdudv

)2

. We have

E(U) = E(U | E)P(E) + E(U | Ec)P(Ec) ≤ E(U | E)P (E) + P(Ec). (19)

Lemma 3 proves that P(Ec) = O(σ6). We have∣∣∣∣∫
P1

wXdudv −
∫
P1

Xdudv

∣∣∣∣
=

∣∣∣∣∫
P1

wXdudv −
∫
A1

wXdudv +

∫
A1

Xdudv −
∫
P1

Xdudv

∣∣∣∣
=

∣∣∣∣∫
P1

wXdudv −
∫
A1

wXdudv

∣∣∣∣+

∣∣∣∣∫
A1

Xdudv −
∫
P1

Xdudv

∣∣∣∣
= O(λ(P1\A1)). (20)

For the last inequality we have assume that the estimate is bounded over
the P1 region. This assumption can be also justified by calculating the prob-
ability that this condition does not hold and showing that the probability
is negligible. Using arguments similar to (20) it is straightforward to prove
that
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∣∣∣∣∫
P4

wXdudv −
∫
P4

Xdudv

∣∣∣∣ = O(λ(P4\A2)).∣∣∣∣∫
P1

wdudv −
∫
P1

dudv

∣∣∣∣ = O(λ(P1\A1)).∣∣∣∣∫
P4

wdudv −
∫
P4

dudv

∣∣∣∣ = O(λ(P4\A2)). (21)

Define P14 = P1 ∪ P4 and B = S\P14. We now calculate an upper bound
for the first term of (19)

E(U | E)P(E)

= E

(∫P14
wXdudv +

∫
B
wXdudv∫

P14
wdudv +

∫
B
wdudv

)2 ∣∣∣ E
P(E)

= E

(∫P1
Xdudv +

∫
B
wXdudv∫

P1
dudv +

∫
B
wdudv

)2 ∣∣∣ E
P(E) +O(σ2)

≤ E

(∫
P1
Xdudv +

∫
B
wXdudv∫

P1
dudv +

∫
B
wdudv

)2

+O(σ2)

≤ E

( ∫
B
wFdudv∫

P1
dudv +

∫
B
wdudv

)2

+ E

(∫
P1
Zdudv +

∫
B
wZdudv∫

P1
dudv +

∫
B
wdudv

)2

+ 2

√√√√E(∫P1
Fdudv +

∫
B
wFdudv∫

P1
dudv +

∫
B
wdudv

)2
√√√√E(∫P1

Zdudv +
∫
B
wZdudv∫

P1
dudv +

∫
B
wdudv

)2

+O(σ2). (22)

Lemma 4. Let w(u, v) be the weights of OANLM with δ`, δs, ns, n`, and τσ
as specified in Lemma 3. Then

E

( ∫
B
wFdudv∫

P1
dudv +

∫
B
wdudv

)2

≤ O(σ4/3| log(σ)|4/3).
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Proof. We have

E

( ∫
B
wFdudv∫

P1
dudv +

∫
B
wdudv

)2

≤ E

( ∫
B
dudv∫

P1
dudv

)2

=

(
λ(B)

λ(P1)

)2

= O(σ4/3| log(σ)|4/3).

To obtain the inequality we maximize the numerator and minimize the de-
nomerator independently.

Lemma 5. Let w(u, v) be the weights of OANLM with δ`, δs, ns, n`, and τσ
as specified in Lemma 3. Then

E

(∫
P1
Zdudv +

∫
B
wZdudv∫

P1
dudv +

∫
B
wdudv

)2

≤ O(σ4/3| log(σ)|4/3).

Proof. Since
∫
B
wdudv ≥ 0, and we are interested in the upper bound of the

risk, we can remove it from the denominator to obtain

E

(∫
P1
Zdudv +

∫
B
wZdudv∫

P1
dudv +

∫
B
wdudv

)2

≤ E

(∫
P1
Zdudv +

∫
B
wZdudv∫

P1
dudv

)2

≤ E

(∫
P1
Zdudv∫

P1
dudv

)2

︸ ︷︷ ︸
V1

+E

(∫
B
wZdudv∫
P1
dudv

)2

︸ ︷︷ ︸
V2

+ 2

√√√√E(∫P1
Zdudv∫

P1
dudv

)2

√√√√√√E
 ∫B wZdudv(∫

P1
dudv

)2


2

︸ ︷︷ ︸
V3

.

28



Now we obtain upper bounds for V1,V2, and V3 separately. First, we have

V1 = E

(∫
P1
Zdudv∫

P1
dudv

)2

= E

∫P1

∫
P1
Z(u, v)Z(u′, v′)dudvdu′dv′(∫

P1
dudv

)2


=


∫
P1

∫
I
θ, 2δsns

,
2δ`
n`

(u,v)
E(Z(u, v)Z(u′, v′))dudvdu′dv′(∫

P1
dudv

)2



≤


∫
P1

∫
I
θ, 2δsns

,
2δ`
n`

(u,v)
nsn`σ

2

δsδ`
dudvdu′dv′(∫

P1
dudv

)2

 = O

(
δsδ`
nsn`

)
. (23)

To obtain an upper bound for V2, we first note that

E(w(u, v)Z(u, v)w(u′, v′)Z(u′, v′))

≤
√
E(w(u, v)Z(u, v))2

√
E(w(u′, v′)Z(u′, v′))2 =

nsn`σ
2

δsδ`
, (24)

and hence,

V2 = E

(∫
B
wZdudv∫
P1
dudv

)2

= E

(∫
B

∫
B
w(u, v)Z(u, v)w(u′, v′)Z(u′, v′)dudvdu′dv′

(
∫
P1
dudv)2

)

≤

(∫
B

∫
B
nsn`σ

2

δsδ`
dudvdu′dv′

(
∫
P1
dudv)2

)
= O(δ2

` ). (25)

Using (23) and (25) it is straightforward to obtain an upper bound for V3.
Combining the upper bounds for V1, V2, and V3 completes the proof.

Combining (22) with Lemmas 4 and 5 establishes the following upper
bound for Case I, where (t1, t2) ∈ S1:

E

(
f(t1, t2)−

∫
S
w(u, v)X(u, v)dudv∫
S
w(u, v)dudv

)2

= O(σ4/3| log(σ)|4/3). (26)
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Case II: (t1, t2) ∈ S2. In this case we assume that the risk is bounded by 1,
since the function f is bounded between 0 and 1. If the estimate is out of
this range, then we will map it to either 0 or 1.

Case III: (t1, t2) ∈ S3. This case is exactly the same as Case I , and hence
we skip the proof.

Finally, combining our results for Cases I, II, and III, we can calculate an
upper bound for the risk of OANLM as

R(f, f̂ o) = E(‖f − f̂ o‖2) =

∫
S1∪S3

(f − f̂ o)2dt1dt2 +

∫
S2

(f − f̂ o)2dt1dt2

= λ(S1 ∪ S3)O(σ4/3| log(σ)|4/3) + λ(S2)O(1) = O(σ4/3| log(σ)|4/3).

So ends the proof of Theorem 2.

5.3. Proof of Corollary 1

The proof of this corollary follows exactly the same route as that of The-
orem 2. We merely redefine the regions Sk and Pk for k ∈ {1, 2, 3}. The new
definition of the Sk regions for the NLM algorithm is given by

Sn1 = {(t1, t2) | t2 > h(t1) + 2δ},
Sn3 = {(t1, t2) | t2 < h(t1)− 2δ},

and Sn2 = S\Sn1 ∪ Sn3 . Since the neighborhoods in NLM are isotropic, we
require a single parameter to describe the neighborhood size, δ = δs = δ`.
The main assumption is that C

2
δ2 < σ. This is clear since δ is assumed

to go to zero as σ → 0. Therefore in the isotropic case, the neighborhood
of the pixels in S1 and S3 does not intersect with the edge contour. Since
the neighborhoods no longer have different anisotropic lengths, the size of
the intersection of the neighborhoods and the edge contour is identical in all
directions and there is no need to define the regions, P1, . . . , P4. Equivalently,
P1 = S1, P4 = S4 and P2 = P3 = ∅. With these definitions the proof of this
corollary is exactly the same as above.

5.4. Proof of Theorem 3

The proof of this theorem is very similar to the proof of Theorem 2. The
only difference is in the definitions of Sk and Pk for k ∈ {1, 2, 3}. Since
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there is a mismatch between the orientations of the neighborhood and the
edge contour, the neighborhood of S1 may intersect the edge. In order to fix
this, we define the new regions called Sβi and P β

i . If the error in θ is upper
bounded by cβσ

β, then define

Sβ1 = {(t1, t2) | t2 > h(t1) + cβσ
βδ` + δs + C/2δ2

`},
Sβ3 = {(t1, t2) | t2 < h(t1)− cβσβδ` − δs − C/2δ2

`},

and Sβ2 = S\Sβ1 ∪ S
β
3 . Furthermore, define P β

1 = P1, P β
4 = P4, P β

2 = Sβ1 \P1,
and P β

3 = Sβ3 \P4. Using these new partitions, the proof follows exactly the
same route as the proof of Theorem 2.

5.5. Proof of Theorem 4

Since the proof is mostly similar to that of Theorem 2, we shall focus on
the major differences. The first difference is that we consider the regions P1–
P4 instead of S1–S3. Previously the regions P1 and P2 were treated jointly
under the region S1. Instead, we shall now consider P1 and P2 separately,
and their differences shall become progressively apparent.

Case I: (t1, t2) ∈ P1. We start with the calculation of the weights w(u, v) for
(u, v) ∈ P1 ∪ P4. Define

R1 , {(u, v) ∈ P1 | wD(u, v) = 1},
R2 , {(u, v) ∈ P4 | wD(u, v) = 0}.

Lemma 6. Let δs, δ`, ns, n`, t be as defined in Lemma 3 and let q = πσ−2/3

in the DANLM algorithm. Then,

P(λ(P1)− λ(R1) > ε) ≤ πσ22/3

ε
,

P(λ(P4)− λ(R2) > ε) ≤ πσ22/3

ε
.

The proof is a simple application of Lemma 3 and the union bound. Note
that since (t1, t2) ∈ P1, all of its directional neighborhoods are located above
the edge and do not intersect with the edge contour.

Define the event F as

F = {λ(P1)− λ(R1) < σ2} ∩ {λ(P4)− λ(A4) < σ2}.
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Lemma 7 confirms that P(F c) = O(σ16/3). The rest of the proof of Case I is
exactly the same as the proof of Case I in Theorem 2, and therefore we do
not repeat it here.

Case II: (t1, t2) ∈ P2. In this case we again start with defining the following
two sets:

L1 , {(u, v) ∈ P1 | wDu,v = 1},
L2 , {(u, v) ∈ P4 | wDu,v = 0}.

Lemma 7. Let δs, δ`, ns, n`, τσ be as defined in Lemma 3, and let q = πσ−2/3.
Then,

P(λ(P1)− λ(L1) > ε) ≤ πσ22/3

ε
.

Proof. If we prove that for some θ ∈ Θ, Iθ,δs,δ`(t1, t2) does not intersect the
edge, then the proof of the lemma is immediate. Suppose that θ∗ is such that
tan(θ∗) = h′(t1), and consider θ̂ = arg minθ∈Θ |θ − θ∗|. To ensure that the
neighborhood Iθ,δs,δ`(t1, t2) does not intersect with the edge, we need to have

t2 + tan(θ̂) (t′ − t1)− δs > h(t1) + h′(t1) (t′ − t1)

+
1

2
h′′(t′′)

(
t′ − i

n

)2

(27)

for all t′ ∈ [t1, t1 + δ`). Also, t′′ ∈ [t1, t
′]. Clearly, tan(θ̂) = tan(θ∗) +

1
1+tan2(θ′)

∆θ, where ∆θ = θ̂ − θ∗. Furthermore, |h′′(t′′)| ≤ C2 and ∆θ ≤ π
2
δ`.

Therefore, (27) will be satisfied if

t2 > h (t1) +
πδ`
2
δ` + δs + C2δ

2
` .

This constraint holds for all pixels in the region P2. Therefore, at least one of
the neighborhoods is completely in the region above h, which in turns proves
the lemma.

Lemma 8. Let δs, δ`, ns, n`, τσ be as defined in Lemma 3, and let q = πσ−2/3.
Then,

P(λ(P4)− λ(L2) > ε) ≤ πσ10/3

ε
.
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Figure 13: Explanation of the neighborhood rotation in Lemma 8.

Proof. We first prove that at least half of the area of Iθ,δs,δ`(u, v) is located
below the edge. For notational simplicity we assume that h′(t1) = 0. Con-
sider Figure 13, in which the neighborhood has an arbitrary orientation. Let
w, v be as defined in this figure. We then have that

v =
d

cos θ
− Cw2

cos θ
− δs tan θ =

d− Cw2 − δs sin θ

cos θ
≥ d− Cw2 − δs

cos θ
, (28)

where d = t2− h(t1). Suppose d is such that, at the correct angle d−Cw2−
δs > 0, i.e., d > (C + 1)σ4/3. According to (28), v > 0, and hence more than
half of the area of the neighborhood is in the white region. Therefore, the
number of pixels in this region is 4 log2 σ ± o(log2 σ).

Case III: (t1, t2) ∈ S2. The proof of this case is identical to that of Case II
in the proof of Theorem 2.

Case IV: (t1, t2) ∈ P3 ∪ P4. The proof of this case is similar to that for the
regions P1 and P2 in Cases I and II and therefore is skipped here.

Finally, combining the upper bounds obtained in Cases I, II, III, and IV
completes the proof of the theorem.

6. Related work on anisotropic denoising

Anisotropy is a fundamental feature of real-world images. As a result,
anisotropic image processing tools can be traced back at least as far as
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the 1970s [29]. Here, we briefly compare and contrast some of the relevant
anisotrpic denoising schemes with ANLM.

Anisotropic filtering methods use a space-varying linear convolution filters
to reduce blur along image edges. Toward this goal, [29] considers several
different neighborhoods around a pixel and selects the most “homogeneous”
neighborhood to smooth over. A more advanced version of this idea can
be found in [30]. There are major differences between such algorithms and
NLM/ANLM, in particular, the estimators are local and do not exploit global
similarities.

Anisotropic diffusion methods smooth a noisy image with a Gaussian
kernel. As the standard deviation of the kernel increases, the smoothing
process introduces larger bias to the edges. In [31, 32] the authors proved
that the set of images derived by this approach can be viewed as the solution
to the heat diffusion equation. Perona and Malik [33] noted the isotropy
in the heat equation and introduced anisotropy. Their anisotropic diffusion
starts with the heat equation but at every iteration exploits the gradient
information of the previous estimate to increase the conductance along the
edges and decrease it across the edges. Efforts to theoretically analyze the risk
of this algorithm have left many open questions remaining [14]. It is worth
noting that the idea of applying an image denoising algorithm iteratively
and guiding it at every iteration based on previous estimates goes back to
Tukey’s twicing [34].

Anisotropic transformations enable simple threshold based denoising al-
gorithms. While the standard separable wavelet transform cannot exploit
the smoothness of the edge contour, a menagerie of anisotropic transforms
have been developed, including ridgelets [15], curvelets [16], wedgelets [9],
platelets [17, 35], shearlets [18], contourlets [19], bandelets [20], and direc-
tionlets [21]. As mentioned in the Introduction, among the above algorithms
only wedgelets can obtain the optimal minimax risk for the Horizon class;
however wedgelets are not suited to denoising textures. One promising av-
enue combing wavelets (for texture denoising) and wedgelets (for edge de-
noising) could follow the path of the image coder in [36].

Alternative anisotropic NLM algorithms have been proposed to address
the inefficiency of using a fixed neighborhood. In [37, 38] the authors adapt
the neighborhood size to the local image content but do not provide any
optimality analysis. In [38] the authors consider different isotropic NLM
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neighborhood sizes depending on how smoothly the image content varies.
In [37] the authors do not change the neighborhood size (which is critical to
acheive optimality) but rather use image gradient information to increase the
weights of the NLM along edges and decrease them across edges. This method
is equivalent to modifying the threshold parameter tn to force NLM to assign
higher weights to edge-like neighborhoods. Unfortunately, this technique
does not reduce the bias that renders NLM sub-optimal.

Finally, data-driven optimality criteria have been considered in [39–41],
where the authors derive lower bounds for the performance of denoising algo-
rithms. However, the analyses provided in these papers are not fully rigorous
and do not cover the performance of NLM for images with sharp edges.

7. Discussion and future directions

We have introduced and analyzed a framework for anisotropic nonlocal
means (ANLM) denoising. Similar to NLM, ANLM exploits nonlocal infor-
mation in estimating the pixel values. However, unlike NLM, ANLM uses
anisotropic, oriented neighborhoods that can exploit the smoothness of edge
contours. This enables ANLM to outperform NLM both theoretically and
empirically. In fact, the performance of ANLM is withtin a logarithmic factor
of optimal as measured by the minimax rate on the Horizon class of images.

Numerous questions remain open for future research. From the theoretical
perspective, the risk analysis of GANLM, the application to noise models
beyond Gaussian, and the extension to three dimensions and beyond (for
seismic, medical, and other data) pose interesting research challenges. From
the practical perspective, the question of how to best tune ANLM to match
the nuanced edges and textures of real-world images remains open, since we
have considered only brutal binary images here. Finally, while NLM is no
longer the state-of-the-art denoising algorithm, it is a key building block in
several top-performing algorithms. It would be interesting to see whether
anisotropy pays off as handily for those algorithms as it does for NLM.
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Appendix A. Minimax risk of the mean filter

In this appendix, we obtain the decay rate of the risk of the mean fil-
ter. Our proof is similar to the proof in [14]. Nevertheless, we repeat the
proof here for the sake of completeness and since our continuous framework
is slightly different from the discrete framework in [14]. See [8] for the gen-
eralization of this result.

The classical mean filter estimates the image via

f̂MF(t1, t2) =
1

∆2

∫ ∆
2

τ1=−∆
2

∫ ∆
2

τ2=−∆
2

dY (t1 − τ1, t2 − τ2),

where ∆ specifies the the size of the window on which averaging takes place.

Theorem 5 ([14]). If f̂MF is the estimate of the mean filter, then

inf
∆

sup
f∈Hα(C)

R(f, f̂MF ) = Θ(σ2/3).

Proof. We first derive a lower bound for R(f, f̂MF). Consider a function
fh(t1, t2) with h(t1) = 1/2 (recall Figure 2) and define

Q∆ = {(t1, t2) | 1/2−∆ < t2 < 1/2 + ∆}.

It is straightforward to confirm that if (t1, t2) ∈ Q∆/4, then |fh(t1, t2) −
Ef̂MF(t1, t2)| > 1

4
. Therefore, if Bias(f̂MF) denotes the bias of the mean filter

estimator, then we have

Bias2(f̂MF) =

∫
S

|fh(t1, t2)− Ef̂MF(t1, t2)|2dt1dt2

≥
∫
Q∆/4

|fh(t1, t2)− Ef̂MF(t1, t2)|2dt1dt2 ≥
1

32
∆. (A.1)
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Now consider a point (t1, t2) ∈ S\Q∆. We have

E(f̂MF(t1, t1)− Ef̂MF(t1, t2))2

=

∫ ∆
2

τ1=−∆
2

∫ ∆
2

τ2=−∆
2

∫ ∆
2

τ ′1=−∆
2

∫ ∆
2

τ ′2=−∆
2

E(dW (t1 − τ1, t2 − τ2)dW (t1 − τ ′1, t2 − τ ′2))

∆4

=
σ2

∆2

Therefore, if Var(f̂MF) is the variance of the mean filter estimator, then we
have

Var(f̂MF) ≥
∫
S\Q4∆

E(f̂MF(t1, t1)− Ef̂MF(t1, t2))2 =
σ2

∆2
(1− 4∆). (A.2)

By combining (A.1) and (A.2) we obtain the lower bound of σ2

∆2 + 1
32

∆− 4σ
2

∆

for the risk of the mean filter estimator. If we minimize this lower bound
over ∆ then we obtain the lower bound of Θ(σ2/3) for the risk.

Now, we derive an upper bound for the risk. Define the region

R∆ = {(t1, t2) | h(t1)−∆ ≤ t2 ≤ h(t1) + ∆}.

It is straightforward to confirm that, if (t1, t2) ∈ S\R∆, then the ∆-
neighborhood of this point does not intersect the edge contour. Therefore,
the bias of the estimator over this region is zero and the variance is σ2

∆2 . If we
bound the risk of the points in the R∆ region by 1, we obtain the following
upper bound for the risk,

R(f, f̂MF) ≤ σ2

∆2
+ 2∆.

Again by optimizing the upper bound over ∆ we obtain the upper bound of
Θ(σ2/3). This completes the proof.

Appendix B. Minimax risk of NLM

Corollary 1 states the following upper bound for the risk of NLM:

sup
f∈Hα(C)

R(f, f̂N) = O(σ| log σ|).
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In this section we prove that the risk of NLM is lower bounded by Ω(σ). The
proof is similar to the proof of Theorem 5 in [8]; we consider the function
fh(t1, t2) for h(t1) = 1/2 and prove that the bias of the NLM on (t1, t2) ∈ Q δ

n

is Θ(1) for any choice of the threshold parameter. However, in the continuous
setting considered here, the steps are more challenging. Following [8] we
consider the semi-oracle NLM algorithm (SNLM). The semi-oracle δ-distance
is defined as

d̃2
δ(dY (t1, t2), dY (s1, s2))

=
1

n2 − 1

(
‖xδt1,t2 − yδs1,s2‖

2
2 − |xδt1,t2(0, 0)− yδs1,s2(0, 0)|2

)
,

where

xδt1,t2(j1, j2) =

∫
(s1,s2)∈Ij1,j2δ

n

f(s1, s2)ds1ds2.

SNLM then estimates the weights according to

wSt1,t2(s1, s2) =

{
1 if d̃2

δ(dY (t1, t2), dY (s1, s2)) ≤ n2σ2

δ2 + τσ,
0 otherwise.

It is clear that the distance estimates of the SNLM algorithm are more accu-
rate than those of NLM algorithm. Hence it outperforms NLM, and a lower
bound that holds for SNLM will hold for NLM as well.

We make the following mild assumptions on the parameters of SNLM.

A1: The window size δ → 0 as σ → 0.

A2: δ2

n2 = Ω(σ2). Otherwise Ed̃2
δ(dY (t1, t2), dY (s1, s2))→∞.

A3: n → ∞ as σ → 0. This ensures that, if two points (t1, t2) and (s1, s2)
have the same neighborhoods, then wt1,t2(u1, u2) = 1 with high proba-
bility.

A4: If d̃(f(t1, t2), f(s1, s2)) > 1/4, then P(wSt1,t2(s1, s2) = 1) = o(σ3).

Again, consider the function fh(t1, t2) for h(t1) = 1/2 (recall Figure 2).
Let (t1, t2) ∈ Qδ/n. For notational simplicity we use w(s1, s2) instead of
wSt1,t2(s1, s2).
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Lemma 9. If |s1 − t1| > δ/2 and |s′1 − t1| > δ/2, then

P(wSt1,t2(s1, s2) = 1) = P(wSt1,t2(s′1, s2) = 1)

for any t1, t2, s1, s2 and s′1.

The proof is straightforward and hence skipped here.

Now consider a point (t1, t2) ∈ Gδ/n.

Lemma 10. If |s− t1| > δ/2, for u < δ/4, then we have

P(wSt1,t2(s, t2 − u) = 1) = P(wSt1,t2(s, t2 + u) = 1)

This lemma is a straightforward application of symmetry, and hence we skip
the proof.

Lemma 11. Suppose that δ and τσ satisfy A1–A4. Then we have

P

(∫
S\Qδ/2

w(s1, s2)ds1ds2 > σ2

)
= o(σ).

Proof. Define
B = {(s1, s2) ∈ S\Qδ/2 | w(s1, s2) = 1}

and the event

G = {λ(B) ≥ σ2}.

Using the Markov Inequality and Assumption A4, it is straightforward to
show that

P(G) = P

(∫
S\Qδ/2

w(u, v)dudv > σ2

)
= o(σλ(S\Qδ/2)) = o(σ).

On the other hand, if λ(B) < σ2, then∫
S\Qδ/2

w(u, v)dudv = O(σ2).

This completes the proof.
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Proposition 1. Let (t1, t2), (s1, s2) ∈ Qδ/n. Then there exists p0 > 0 inde-
pendent of σ such that for every tn, δ we have

P(wnt1,t2(u, v) = 1) > p0.

Proof. We need to demonstrate that regions above and below the edge con-
tour are included in the NLM algorithm with a constant non-zero probability
p0. First, we use the definition of the weights of the NLM algorithm to de-
termine the probability that w(u, v) = 1

P(wnt1,t2(s1, s2) = 1) = P

(
d̃2
δ(dY (t1, t2), dY (s1, s2) <

n2σ2

δ2
+ τσ

)
= P

(
1

n2 − 1

∑(
s2
`,p −

n2σ2

δ2

)
− 1

n2 − 1

∑
s`,0 ≤ −

1

n
+ τσ

)
≥ P

(
1

n2 − 1

∑(
s2
`,p −

n2σ2

δ2

)
− 1

n2 − 1

∑
s`,0 ≤ −

1

n

)
,

where s`,p = z0,δ,δ
s1,s2

(`, p). Using the Berry-Esseen Central Limit Theorem for
independent non-identically distributed random variables [42], we can easily
bound this probability away from zero. For more details, see Proposition 1
in [8].

We now consider the weights for the regions above and below the edge
contour separately. Therefore, we define

Q1
∆ = {(t1, t2) | 1/2 < t2 < 1/2 + ∆/4},

Q2
∆ = {(t1, t2) | 1/2−∆/4 < t2 < 1/2},

Ω1
∆,δ = {(t1, t2) | 1/2 < t2 < 1/2 + ∆/4, 0 < t1 < 2δ},

Ω2
∆,δ = {(t1, t2) | 1/2−∆/4 < t2 < 1/2, 0 < t1 < 2δ}.

Let
pu,σ = P(wn(t1,t2)(u, v) = 1).

Note that according to Lemma 9 this probability does not depend on v.

Lemma 12. If w(u, v) denotes the weights used in the NLM algorithm, then
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we have

P

(∣∣∣∣∣
∫
Q1

∆

w(u, v)dudv −
∫
Q1

∆

pu,σdu

∣∣∣∣∣ > 2ε+ 2

√
| log(σ)|

δ
∆δ

)
= O

(
σ4

ε

)
,

P

(∣∣∣∣∣
∫
Q2

∆

w(u, v)dudv −
∫
Q2

∆

pu,σdu

∣∣∣∣∣ > 2ε+ 2

√
| log(σ)|

δ
∆δ

)
= O

(
σ4

ε

)
.

Proof. The weights w(u, v) over the pixelated neighborhoods can be rewritten
in the following way

∫
Q1

∆

w(u, v)dudv =

∫
Ω1

∆

1
2δ∑
k=1

w(u+ 2kδ, v)dudv.

Applying the Hoeffding inequality, it is straightforward to confirm that

P

∣∣∣∣∣∣
1
2δ∑
k=1

w(u+ 2kδ, v)− pu,σ
2δ

∣∣∣∣∣∣ > t

 ≤ 2e−2δt2 .

Now, defining

Γ1
∆ =

(u, v) ∈ Ω1
∆

∣∣∣∣∣∣
∣∣∣ 1

2δ∑
k=1

w(u+ 2kδ, v)− pu,σ
2δ

∣∣∣ < t

 ,

we see that

P(λ(Ω1
∆)− λ(Γ1

∆) > ε) = P

(∫
(u,v)∈Ω1

∆

(1− I((u, v) ∈ Γ1
∆)dudv > ε

)

≤ 2e−2δt2

ε
,

where the last step is due to Markov’s Inequality. Define the event

F = {λ(Ω2
∆)− λ(Γ2

∆) < ε}.
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If λ(Ω2
∆)− λ(Γ2

∆) < ε, then we have that∣∣∣∣∣
∫
Q1

∆

w(u, v)dudv −
∫
Q1

∆

p(u, σ)dudv

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
Q1

∆

w(u, v)dudv −
∫

Γ1
∆

w(u, v)dudv

∣∣∣∣∣
+

∣∣∣∣∣
∫

Γ1
∆

w(u, v)dudv −
∫

Γ1
∆

p(u, σ)dudv

∣∣∣∣∣+

∣∣∣∣∣
∫

Γ1
∆

p(u, σ)dudv −
∫
Q1

∆

p(u, σ)dudv

∣∣∣∣∣
≤ 2ε+ 2t∆δ.

Setting t =
√
| log σ|
δ

completes the proof.

Theorem 6. Suppose that δ, τσ and n satisfy Assumptions A1–A4. Then
the risk of SNLM is

inf
δn,tn

sup
f∈Hα(C)

R(f, f̂S) = Ω(σ).

Proof. Let (t1, t2) ∈ Ω2
δ/n. We will calculate the bias of the NLM estimator

at this point. We have

E

(
f(t1, t2)−

∫
S
w(u, v)X(u, v)dudv∫
S
w(u, v)dudv

)2

≥
(
E

(∫
S
w(u, v)X(u, v)dudv∫
S
w(u, v)dudv

))2

.
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which leads us to towards the lower bound

E

(∫
S
w(u, v)X(u, v)dudv∫
S
w(u, v)dudv

)
≥ E

(∫
S
w(u, v)X(u, v)dudv∫
S
w(u, v)dudv

| F ∩ G
)
P(F ∩ G)

≥ E

( ∫
Qδ/4

w(u, v)X(u, v)dudv∫
Qδ/4

p(u, v)dudv − 2ε− tδ2
| F ∩ G

)
P(F ∩ G)

≥ E

( ∫
Qδ/4

w(u, v)X(u, v)dudv∫
Qδ/4

p(u, v)dudv − 2ε− tδ2

)
− P(F c ∪ Gc)

= E

( ∫
Qδ/4

w(u, v)f(u, v)dudv∫
Qδ/4

p(u, v)dudv − 2ε− tδ2

)
− P(F c ∪ Gc)

= E

 ∫
Q1
δ/4
w(u, v)dudv∫

Qδ/4
p(u, v)dudv − 2ε− tδ2

− P(F c ∪ Gc)

= E

 ∫
Q1
δ/4
p(u, v)dudv + 2ε+ t∫

Qδ/4
p(u, v)dudv − 2ε− tδ2

− P(F c ∪ Gc)

≥ E

 ∫
Q1
δ/4
p(u, v)dudv + 2ε+ t

σ +
∫

2Q1
δ/4
p(u, v)dudv − 2ε− tδ2

− P(F c ∪ Gc). (B.1)

The minimum of the last line is achieved when
∫
Q1
δ/4
p(u, v)dudv is minimized.

However, we have proved in Proposition 1 that p(u) > p0 for (u, v) ∈ Q1
δ/n.

Therefore, this minimizing integral is Ω(σ). When we substitute this opti-
mum value in the lower bound (B.1), we see that the risk over this region
is Θ(1). Therefore the bias of the NLM over the entire image is Ω( δ

n
) or,

equivalently, Ω(σ) according to Assumption A2.

Appendix C. Proof of Theorem 1

Here we focus on the case of α = 2 and use the standard technique of
hypercube construction to establish the lower bound [12]. Let φ : [0, 1] →
R+ ∪ {0} be a two times differentiable function with ‖d2φ

dt2
‖∞ = 1, φ(0) =

φ(1) = 0, dφ
dt

∣∣
0

= dφ
dt

∣∣
1

= 0, and d2φ
dt2

∣∣∣
0

= d2φ
dt2

∣∣∣
1

= 0. Define

φi,m , Cm−2φ(mt− i) i = 0, 1, . . . ,m− 1.
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Set f0 , 1{t2<0.5}, and define ψi,m , 1{t2≤φi,m(t1)+0.5} − f0. Finally, define

Fm , {f0 +
m∑
i=1

ζiψi,m(t1, t2), ζi ∈ {0, 1}}.

Since Fm ⊂ H2(C), we have

inf
f̂

sup
H2(C)

E‖f − f̂‖2
2 ≥ inf

f̂
sup
Fm
E‖f − f̂‖2

2. (C.1)

The right hand side of (C.1) can be calculated more easily since we can
restrict our attention to the estimators of the form f0 +

∑m
i=1 ζ̂iψi,m. This is

due to the fact that if PFm is the projection onto the above affine space, for
every f ∈ Fm we have

‖PFm(f̂)− f‖2
2 ≤ ‖PFm(f̂)− PFm(f)‖2

2 ≤ ‖f̂ − f‖2
2.

Furthermore for any f ∈ Fm we have

‖f − f̂‖2 = ‖ζ − ζ̂‖2,

and therefore the original problem reduces to one of estimating ζ. The final
simplification is due to the fact that by projecting the observations onto the
space of signals we can only improve the estimation. Therefore, we reduce
the problem to the problem of estimating ζ1, . . . , ζm from the observations
yF1 , . . . , y

F
m given by

yFi =

∫
ψi,m(t1, t2)dY (t1, t2) = 〈ψi,m, ψi,m〉γj +

∫
ψj,mdW (t1, t2).

Define 〈ψj,m, ψj,m〉 = κm, we then have

yFi = κmζi + wFi ,

where wFi
iid∼ N(0, σ2km). Note that κm = Θ(m−3). Consider the problem

of estimating γ1 from the observation γ1 + N(0, σ2/κm) and set m to the
smallest integer for which σ2/κm ≤ 1. If the risk of this estimator is lower
bounded by B, the risk of the original estimator will be Bmκ2

m = Θ(σ4/3).
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